首页 > 学科考试 > 数学

八年级上册数学知识点

时间:2024-07-18 10:46:08
人教版八年级上册数学知识点(7篇)

人教版八年级上册数学知识点(7篇)

在我们平凡的学生生涯里,很多人都经常追着老师们要知识点吧,知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些才是我们真正需要的知识点呢?下面是小编帮大家整理的人教版八年级上册数学知识点,欢迎阅读,希望大家能够喜欢。

人教版八年级上册数学知识点1

1 全等三角形的对应边、对应角相等

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

5 边边边公理(SSS) 有三边对应相等的两个三角形全等

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

7 定理1 在角的平分线上的点到这个角的两边的距离相等

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

9 角的平分线是到角的两边距离相等的所有点的集合

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

12 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13 推论3 等边三角形的各角都相等,并且每一个角都等于60°

14 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15 推论1 三个角都相等的三角形是等边三角形

16 推论 2 有一个角等于60°的等腰三角形是等边三角形

17 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18 直角三角形斜边上的中线等于斜边上的一半

19 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

20 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

初二数学求定义域口诀

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

初中提高数学成绩诀窍

很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

人教版八年级上册数学知识点2

全等三角形知识点

1、全等图形:能够完全重合的两个图形就是全等图形。

2、全等图形的性质:全等多边形的对应边、对应角分别相等。

3、全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:

全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:

(1)周长相等的两个三角形,不一定全等;

(2)面积相等的两个三角形,也不一定全等。

小练习

1、下列说法中正确的说法为()

①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,

A、①②③④B、①③④C、①②④D、②③④

2、一个正方形的侧面展开图有()个全等的正方形

A、2个B、3个C、4个D、6个

3、对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()

①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等、

A、1个B、2个C、3个D、4个

三角形全等的判定知识点

1、三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。

(3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。

(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

2、直角三角形全等的判定

利用一般三角形全等的判定都能证明直角三角形全等、

斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”)、

注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

小练习

1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______

核心考点:全等三角形的判定

2、王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______

核心考点:三角形的稳定性

3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______

核心考点:全等三角形的判定

角的平分线的性质知识点

1、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

2、判定定理:到角的两边距离相等的点在该角的角平分线上。

3、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),

②、回顾三角形判定,搞清我们还需要什么,

③、正确地书写证明格式(顺序和对应关系从已知推 ……此处隐藏3715个字……设未知数;

③根据题意找相等关系,列出(分式)方程;

④解方程,并验根;

⑤写出答案.

数学解题方法与技巧

填空题答题技巧

要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。

对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

解答题答题技巧

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

初中数学有理数的运算知识点

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

人教版八年级上册数学知识点7

1、全等三角形的对应边、对应角相等

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5、边边边公理(SSS)有三边对应相等的两个三角形全等

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7、定理1在角的平分线上的点到这个角的两边的距离相等

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

9、角的平分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13、推论3等边三角形的各角都相等,并且每一个角都等于60°

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15、推论1三个角都相等的三角形是等边三角形

16、推论2有一个角等于60°的等腰三角形是等边三角形

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18、直角三角形斜边上的中线等于斜边上的一半

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22、定理1关于某条直线对称的两个图形是全等形

23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

28、定理四边形的内角和等于360°

29、四边形的外角和等于360°

30、多边形内角和定理n边形的内角的和等于(n—2)×180°

31、推论任意多边的外角和等于360°

32、平行四边形性质定理1平行四边形的对角相等

33、平行四边形性质定理2平行四边形的对边相等

34、推论夹在两条平行线间的平行线段相等

35、平行四边形性质定理3平行四边形的对角线互相平分

36、平行四边形判定定理1两组对角分别相等的四边形是平行四边形

37、平行四边形判定定理2两组对边分别相等的四边形是平行四边形

38、平行四边形判定定理3对角线互相平分的四边形是平行四边形

39、平行四边形判定定理4一组对边平行相等的四边形是平行四边形

40、矩形性质定理1矩形的四个角都是直角

41、矩形性质定理2矩形的对角线相等

42、矩形判定定理1有三个角是直角的四边形是矩形

43、矩形判定定理2对角线相等的平行四边形是矩形

44、菱形性质定理1菱形的四条边都相等

45、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

46、菱形面积=对角线乘积的一半,即S=(a×b)÷2

47、菱形判定定理1四边都相等的四边形是菱形

48、菱形判定定理2对角线互相垂直的平行四边形是菱形

49、正方形性质定理1正方形的四个角都是直角,四条边都相等

50、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

51、定理1关于中心对称的两个图形是全等的

52、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

53、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

54、等腰梯形性质定理等腰梯形在同一底上的两个角相等

55、等腰梯形的两条对角线相等

56、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

57、对角线相等的梯形是等腰梯形

58、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

59、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

60、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

61、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

62、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

《人教版八年级上册数学知识点(7篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式