首页 > 学科考试 > 数学

数学必考知识点

时间:2024-07-18 10:46:08
数学必考知识点

数学必考知识点

上学期间,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。相信很多人都在为知识点发愁,下面是小编为大家整理的数学必考知识点,欢迎大家分享。

数学必考知识点1

比和比例

1.比的意义:两个数相除又叫做两个数的比。

比例的意义:表示两个比相等的式子叫做比例。

2.求比值:比的前项除以比的后项所得的商叫做比值。

3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

比例的基本性质:在比例里,两个外项的积等于两个内项的积。

4.应用比的基本性质可以化简比;

应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。

5.用字母表示比与除法和分数的关系。

a:b=a÷b=(b≠0)

6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。

7.图上距离:实际距离=比例尺

或=比例尺

实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺

8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。

化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。

9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

用式子表示:=k(一定),用图表示正比例关系是一条直线。

10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

用式子表示:x×y=k(一定),用图表示反比例关系是一条曲线。

数学必考知识点2

图形的认识、测量量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

二、长度单位:

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

九、常用的质量单位有:吨、千克、克。

十、质量单位:

十一、常用的时间单位有:

世纪、年、季度、月、旬、日、时、分、秒。

十二、时间单位:(60)

十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。

十四、常用计量单位用字母表示:

数学必考知识点3

  一.例题讲解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系

A) M=N P B) M N=P C) M N P D) N P M

分析一:从判断元素的共性与区别入手。

解答一:对于集合M:{x|x= ,m∈Z};对于集合N:{x|x= ,n∈Z}

对于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。

分析二:简单列举集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合, ,则( B )

A.M=N B.M N C.N M D.

解:

当时,2k+1是奇数,k+2是整数,选B

【例2】定义集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为

A)1 B)2 C)3 D)4

分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。

变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

A)5个 B)6个 C)7个 D)8个

变式2:已知{a,b} A {a,b,c,d,e},求集合A.

解:由已知,集合中必须含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个 .

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1,

∴ ∴

变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

< ……此处隐藏16181个字……

24.比和比例

比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

比值:比的前项除以后项的商,叫做比值。

比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

比例:表示两个比相等的式子叫做比例。a:b=c:d或

比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

比例尺:图上距离与实际距离的比叫做比例尺。

按比例分配:把几个数按一定比例分成几份,叫按比例分配。

25.综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:路程=速度时间;路程时间=速度;路程速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)顺水时间

逆水行程=(船速-水速)逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)2

水 速=(顺水速度-逆水速度)2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

26.工程问题

基本公式:

①工作总量=工作效率工作时间

②工作效率=工作总量工作时间

③工作时间=工作总量工作效率

基本思路:

①假设工作总量为1(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

经验简评:合久必分,分久必合。

27.逻辑推理

基本方法简介:

①条件分析假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示是,有等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

28.几何面积

基本思路:

在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

常用方法:

1. 连辅助线方法

2. 利用等底等高的两个三角形面积相等。

3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

4. 利用特殊规律

①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

②梯形对角线连线后,两腰部分面积相等。

③圆的面积占外接正方形面积的78.5%。

29.立体图形

名称 图形 特征 表面积 体积

体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh

=Sh

体 8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3

体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底

S侧=Ch V=Sh

体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底

S侧=rl V=Sh

体 圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3

30.时钟问题快慢表问题

基本思路:

1、 按照行程问题中的思维方法解题;

2、 不同的表当成速度不同的运动物体;

3、 路程的单位是分格(表一周为60分格);

4、 时间是标准表所经过的时间;

数学必考知识点15

1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率

面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。

体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。

质量单位有:吨、千克、克,写出它们之间的进率。

时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。

2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。

小月有:4、6、9、11月,共4个,每月30天。 二月平年是28天,闰年是29天。

3.一年有4个季度,每个季度3个月。

4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。

5.名数:把计量得到的数和单位名称合起来叫做名数。

单名数:只带有一个单位名称的叫做单名数。

复名数:带有两个或两个以上单位名称的叫做复名数。

6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。

《数学必考知识点.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式