初中数学知识点
在现实学习生活中,大家都背过各种知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。相信很多人都在为知识点发愁,下面是小编为大家收集的初中数学知识点,欢迎阅读,希望大家能够喜欢。
初中数学知识点1整式及其运算:
【考点归纳】
1.代数式:用运算符号(加、减、乘、除、乘方、开方)把()或表示()连接而成的式子叫做代数式.
2.代数式的值:用()代替代数式里的字母,按照代数式里的运算关系,计算后所得的()叫做代数式的值.
3.整式
(1)单项式:由数与字母的()组成的代数式叫做单项式(单独一个数或()也是单项式).单项式中的()叫做这个单项式的系数;单项式中的所有字母的()叫做这个单项式的次数.
(2)多项式:几个单项式的()叫做多项式.在多项式中,每个单项式叫()做多项式的(),其中次数最高的项的()叫做这个多项式的次数.不含字母的项叫做.
(3)整式:()与()统称整式.
4.同类项:在一个多项式中,所含()相同并且相同字母的()也分别相等的项叫做同类项.合并同类项的法则是()。
20xx人教版七年级数学有理数知识点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
7.整式的除法
⑴单项式除以单项式的法则:把()、()分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.
⑵多项式除以单项式的法则:先把这个多项式的每一项分别除以(),再把所得的商().
初中数学知识点21.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。
2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。
6.不在同一直线上的三点确定一个圆。
7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
10.经过切点且垂直于切线的直线必经过圆心。
11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
12.切线的性质定理圆的切线垂直于经过切点的半径。
13.经过圆心且垂直于切线的直线必经过切点
14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
15.圆的外切四边形的两组对边的和相等外角等于内对角。
16.如果两个圆相切,那么切点一定在连心线上。
17.
①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交d>R-r)
④两圆内切d=R-r(R>r)
⑤两圆内含d=r)
18.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。
21.内公切线长= d-(R-r)外公切线长= d-(R+r)。
22.定理一条弧所对的圆周角等于它所对的圆心角的一半。
23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
初中数学知识点31、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。
2、几种几何图形的重心:
⑴ 线段的重心就是线段的中点;
⑵ 平行四边形及特殊平行四边形的重心是它的两条对角线的交点;
⑶ 三角形的三条中线交于一点,这一点就是三角形的重心;
⑷ 任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。
提示:⑴ 无论几何图形的形状如何,重心都有且只有一个;
⑵ 从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。
3、常见图形重心的性质:
⑴ 线段的重心把线段分为两等份;
⑵ 平行四边形的重心把对角线分为两等份;
⑶ 三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。
上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。
初中数学知识点4数据的分析
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均 ……此处隐藏5786个字……未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
今天的内容就介绍到这里了。
初中数学知识点12【知识点】:
1、零下温度的表示方法,在温度前面写上“—”号,如“—2℃”“—12℃”通常读作零下2摄氏度、零下12摄氏度。
2、能够正确地比较两个零下的温度的高低:0℃和零上的温度高于零下的温度;零下温度的数字越大表示温度越低。
正负数
生活中的负数
1、正数:比0大的数字都是正数,有的时候我们在正数前面添上“+”号,如+5、+20等等,读作:正5、正20。
2、负数:比0小的数字都是负数,我们在负数前面提案上“—”号,如—2、—10等等,读作:负2、负10。
3、明确0既不是正数也不是负数。
能用正数、负数表示实际问题,要确定以什么作为标准(即以什么作0点)
初中数学知识点13一、角的定义
“静态”概念:有公共端点的两条射线组成的图形叫做角。
“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。
如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。
二、角的换算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、补角的概念和性质:
概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。
如果两个角的和是一个直角,那么这两个角叫做互为余角。
说明:互补、互余是指两个角的数量关系,没有位置关系。
性质:同角(或等角)的余角相等;
同角(或等角)的补角相等。
四、角的比较方法:
角的大小比较,有两种方法:
(1)度量法(利用量角器);
(2)叠合法(利用圆规和直尺)。
五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。
常见考法
(1)考查与时钟有关的问题;(2)角的计算与度量。
误区提醒
角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。
【典型例题】(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是( )
【答案】3时到6时,时针旋转的是一个周角的1/4,故是90度 ,本题选C.
初中数学知识点14圆周角知识点
1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
平均数中位数与众数知识点
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
有理数知识点
1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7.由绝对值的定义可知:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
初中数学知识点15正棱锥是棱锥的一种,具备着所有棱锥的性质和定理。
正棱锥
如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
正棱锥的性质
(1)正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);
(2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;
(3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;
(4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch‘。
特别地,侧棱与底面边长相等的正三棱锥叫做正四面体。
文档为doc格式