首页 > 学科考试 > 数学

数学向量知识点

时间:2024-07-18 10:45:50
数学向量知识点10篇

数学向量知识点10篇

在现实学习生活中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。还在为没有系统的知识点而发愁吗?以下是小编为大家收集的数学向量知识点,仅供参考,欢迎大家阅读。

数学向量知识点1

向量的概念、向量的基本定理

【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算

【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点

【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

考点四:向量与三角函数的综合问题

【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的交汇

【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

考点六:平面向量在平面几何中的应用

【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

【命题规律】命题多以解答题为主,属中等偏难的试题。

成绩不理想的原因

1、对知识点的理解停留在一知半解的层次上;

2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;

3、解题时,小错误太多,始终不能完整的解决问题;

4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;

5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;

6、学习缺少科学性,上课不认真记笔记,课后不能及时巩固、复习;忙于应付作业,对知识不求甚解。

7、忽视基础,有些“自我感觉良好”的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,反而对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,没有坚实的基础和基本功,到考试时取得不了高分;

8、忽视作业或练习,缺乏对问题的深入思考,有时练习册上的答案由于印刷错误,孩子们作业做完后核对答案时不相信自己的结论,把自己的答案一划,把错误答案抄上;书写规范性差;

9、周练考试出错率高,一种是一时想不出怎么做,事后会做,临场状态不好;第二种是表面上会做,但由于审题不仔细,对概念理解不清,计算不准确;第三种是时间不够,解题速度慢,平时做题习惯不好,不讲速度;第四种是根本做不出来,基本功不行,更欠缺融会贯通能力。

集合的特性

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

数学向量知识点2

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向.像这样,具有方向的线段叫做有向线段.记作:.

2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.

3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.

4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.

8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的..由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.

9.单位向量:长度等于1的向量叫做单位向量.

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||.

13.数乘向量的定义:

实数和向量的乘 ……此处隐藏2748个字……

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,,使得= e1+ e2

高考数学必修四学习方法

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

高考数学必修四学习技巧

养成良好的学习数学习惯

多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

及时了解、掌握常用的数学思想和方法

中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

数学向量知识点8

1、平面向量基本概念

有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;

向量的模:有向线段AB的长度叫做向量的模,记作|AB|;

零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);

相等向量:长度相等且方向相同的向量叫做相等向量;

平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;

单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

2、平面向量运算

加法与减法的代数运算:

(1)若a=(x1,y1),b=(x2,y2)则a b=(x1+x2,y1+y2)。

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+ = +(交换律);+(+c)=(+)+c(结合律);

实数与向量的积:实数与向量的积是一个向量。

(1)| |=| |·| |;

(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。

两个向量共线的充要条件:

(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= 。

(2)若=(),b=()则‖b 。

3、平面向量基本定理

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2。

4、平面向量有关推论

三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。

若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。

若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。

三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)

数学向量知识点9

【考纲解读】

1.理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义.

2.了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件.

3.理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.

【考点预测】

高考对平面向量的考点分为以下两类:

(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大.

(2)考查平面向量的综合应用.平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强.

【要点梳理】

1.向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;

2.实数与向量的乘积及是一个向量,熟练其含义;

3.两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;

4.两个向量夹角的范围是:[0,π]

5.向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件.

数学向量知识点10

数乘向量

实数和向量a的乘积是一个向量,记作a,且∣a∣=∣∣∣a∣。

当0时,a与a同方向;

当0时,a与a反方向;

当=0时,a=0,方向任意。

当a=0时,对于任意实数,都有a=0。

注:按定义知,如果a=0,那么=0或a=0。

实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的∣∣倍;

当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的∣∣倍。

数与向量的乘法满足下面的运算律

结合律:(a)b=(ab)=(ab)。

向量对于数的分配律(第一分配律):(+)a=a+a.

数对于向量的分配律(第二分配律):(a+b)=a+b.

数乘向量的消去律:① 如果实数0且a=b,那么a=b。② 如果a0且a=a,那么=。

《数学向量知识点10篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式