首页 > 学科考试 > 数学

高二数学知识点

时间:2024-07-18 10:45:49
高二数学知识点

高二数学知识点

在我们平凡无奇的学生时代,是不是听到知识点,就立刻清醒了?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。想要一份整理好的知识点吗?以下是小编为大家整理的高二数学知识点,仅供参考,大家一起来看看吧。

高二数学知识点1

数列的基本概念

数列的函数理解:

①数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

数列的一般形式可以写成a1,a2,a3,…,an,a(n+1),……简记为{an},项数有限的数列为“有穷数列”(finite sequence),项数无限的数列为“无穷数列”(infinite sequence)。

数列的各项都是正数的为正项数列;从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;各项呈周期性变化的数列叫做周期数列(如三角函数);各项相等的数列叫做常数列(如:2,2,2,2,2,2,2,2,2)。

通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。

递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列中项的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。

如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,3.1,3.14,3.141,…它没有通项公式。

用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:1.集合中的元素是互异的,而数列中的项可以是相同的。2.集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。

高二数学知识点2

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°)。(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体:①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线。

5、求角:(步骤:Ⅰ、找或作角;Ⅱ、求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形。

⑵直线与平面所成的角:直线与射影所成的角。

高二数学知识点3

1、异面直线

异面直线定义:不同在任何一个平面内的两条直线。

异面直线性质:既不平行,又不相交。

异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。

异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角。C、利用三角形来求角。

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点。

三种位置关系的符号表示:aαa∩α=Aaα

(9)平面与平面之间的位置关系:平行——没有公共点;αβ

相交——有一条公共直线。α∩β=b

2、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行。

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。(线面平行→面面平行)

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行)

(3)垂直于同一条直线的两个平面平行。

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

3、空间中的垂直问题

(1)线线、面面、线面垂直的定义

两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直 ……此处隐藏4782个字……/p>

概率(12课时,5个)

1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

选修Ⅱ(24个)

概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

高二数学知识点11

1.万能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)

2.辅助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a

3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.单位向量:单位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根号(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根号(x1平方+y1 平方)*根号(x2 平方+y2 平方)

5.空间向量:同上推论 (提示:向量a={x,y,z})

6.充要条件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2

7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方

高二数学知识点12

(一)解三角形:

1、正弦定理:在中,、、分别为角、、的对边,,则有

(为的外接圆的半径)

2、正弦定理的变形公式:①,,;

②,,;③;

3、三角形面积公式:.

4、余弦定理:在中,有,推论:

(二)数列:

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:。

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

高二数学知识点13

定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

范围:

倾斜角的取值范围是0°≤α<180°。

理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

③倾斜角相同,未必表示同一条直线。

公式:

k=tanα

k>0时α∈(0°,90°)

k<0时α∈(90°,180°)

k=0时α=0°

当α=90°时k不存在

ax+by+c=0(a≠0)倾斜角为A,

则tanA=-a/b,

A=arctan(-a/b)

当a≠0时,

倾斜角为90度,即与X轴垂直

高二数学知识点14

1、导数的定义:在点处的导数记作。

2。导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3。常见函数的导数公式:

4。导数的四则运算法则:

5。导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学知识点15

1若等差数列{an}的前n项和为Sn,且a2+a3=6,则S4的值为()

A.12B.11C.10D.9

2设等差数列?an?的前n项和为Sn,若a1??11,a4?a6??6,则当Sn取最小值时,n等于()

A.6B.7C.8D.9

3记等差数列的前n项和为Sn,若S2?4,S4?20,则该数列的公差d?()

A、2B、3C、6D、7

4等差数列{an}中,a3?a4?a5?84,a9?73.

求数列{an}的通项公式及Sn

《高二数学知识点.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式